Skip to main content
Version: 1.0.0

TwinEdge Edge Overview

TwinEdge Edge is the on-premise component of the TwinEdge platform. It runs on your local network, connects directly to industrial equipment, and provides local dashboards, ML inference, and data buffering.

Architecture

┌─────────────────────────────────────────────────────────────────────┐
│ TwinEdge Edge │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │
│ │ OPC UA │ │ ML Engine │ │ Storage │ │ Alert │ │
│ │ Server │ │ (ONNX) │ │ (SQLite) │ │ Engine │ │
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └─────┬──────┘ │
│ │ │ │ │ │
│ └────────────────┴────────────────┴────────────────┘ │
│ │ │
│ ┌─────────┴─────────┐ │
│ │ Node-RED │ │
│ │ Flow Engine │ │
│ └─────────┬─────────┘ │
│ │ │
│ ┌─────────┴─────────┐ │
│ │ Local Dashboard │ │
│ │ (Port 8080) │ │
│ └───────────────────┘ │
│ │
└────────────────────────────────┬────────────────────────────────────┘

│ HTTPS / MQTT


┌───────────────────────┐
│ TwinEdge Cloud │
│ (api.twinedgeai.com) │
└───────────────────────┘

Key Features

Protocol Hub

TwinEdge Edge acts as a protocol translator and data aggregator:

  • OPC UA Server: Exposes all connected devices through a unified namespace
  • Multi-Protocol: Connect Modbus, EtherNet/IP, S7, and MQTT devices
  • Tag Browser: Discover and map device tags automatically

Local ML Inference

Run machine learning models directly on the edge:

  • ONNX Runtime: Execute models trained in the cloud
  • Low Latency: Sub-100ms inference for real-time decisions
  • Model Updates: OTA model deployment from cloud

Local Storage

Buffer data locally for reliability:

  • SQLite Database: Store telemetry during network outages
  • Parquet Export: Export historical data for analysis
  • Configurable Retention: Set data retention policies

Alert Engine

Respond to anomalies instantly:

  • Local Alerts: No cloud dependency for critical alerts
  • Multi-Channel: LED indicators, local buzzers, relay outputs
  • Cloud Sync: Forward alerts to cloud when connected

Local Dashboard

Monitor equipment without internet:

  • PWA: Install as app on tablets
  • Real-time Charts: Live data visualization
  • Touch Optimized: Designed for industrial HMI use

Deployment Modes

ModeDescriptionUse Case
DevelopmentDemo data, simulators enabledTesting, demos
ProductionReal devices only, no test dataLive deployments
OfflineNo cloud sync, fully autonomousAir-gapped sites

Hardware Requirements

Minimum (Raspberry Pi 4)

  • CPU: 4 cores @ 1.5GHz
  • RAM: 2GB
  • Storage: 16GB SD card
  • Network: Ethernet recommended
  • CPU: 4+ cores @ 2GHz
  • RAM: 4GB+
  • Storage: 32GB+ SSD
  • Network: Gigabit Ethernet

Installation

  1. Download the TwinEdge Edge image from downloads.twinedgeai.com
  2. Flash to SD card using Balena Etcher
  3. Boot your Raspberry Pi
  4. Access setup wizard at http://twinedge.local:8080

Option 2: Docker Compose

# Clone the repository
git clone https://github.com/twinedge/twinedge-edge.git
cd twinedge-edge

# Start services
docker-compose up -d

# Access dashboard
open http://localhost:8080

Option 3: Manual Installation

See Installation Guide for detailed steps.

Getting Started

  1. Connect to Network: Plug in Ethernet or configure WiFi
  2. Access Dashboard: Navigate to http://twinedge.local:8080
  3. Link to Cloud: Enter your organization token
  4. Add Devices: Configure industrial protocol connections
  5. Start Monitoring: View real-time data on the local dashboard

Next Steps